13 разрядное суммирующее устройство да винчи. Сибирский университет потребительской кооперации. Введение Ранние приспособления и устройства для счёта

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Ботаника

"Круги срезанных древесных ветвей показывают число их лет и то, какие были более влажными или более сухими, смотря по большей и меньшей их толщине. И показывают так страны света [смотря по тому], куда будут обращены; потому что более толстые обращены более к северу, чем к югу, и, таким образом, центр дерева по этой причине ближе к его южной, чем к его северной коре. И хотя это живописи ни к чему, все же я об этом напишу, дабы опустить возможно меньше из того, что известно мне о деревьях".

"Природа во многих растениях расположила листья последних ветвей так, что шестой лист всегда находится над первым, и так далее, в той же последовательности…"

Антропология

"Смотри же, надежда и желание водвориться на свою родину и вернуться в первое свое состояние, уподобляется бабочке в отношении света, и человек, который всегда с непрекращающимся желанием, полный ликования, ожидает новой весны, всегда нового лета, и всегда новых месяцев, и новых годов, - причем кажется ему, будто желанные предметы слишком медлят прийти, - не замечает, что собственного желает разрушения! А желание это есть квинтэссенция, дух стихий, который, оказываясь заточенным душой человеческого тела, всегда стремится вернуться к пославшему его. И хочу, чтобы ты знал, что это именно желание есть квинтэссенция - спутница природы, а человек - образец мира". (83 Br. M. 156. v.)

"Человек назван древними малым миром, - и нет спора, что название это уместно, ибо как человек составлен из земли, воды, воздуха и огня, так и тело земли. Если в человеке есть кости, служащие ему опорой, и покровы из мяса - в мире есть скалы, опоры земли; если в человеке есть кровяное озеро - там, где легкое растет и убывает при дыхании, - У тела земли есть свой океан, который также растет и убывает каждые 6 часов, при дыхании мира; если от названного кровяного озера берут начало жилы, которые, ветвясь, расходятся по человеческому телу, то точно так же и океан наполняет тело земли бесконечными водными жилами. В теле земли отсутствуют сухожилия, которых нет потому, что сухожилия созданы ради движения, а так как мир находится в постоянном равновесии, то движения здесь не бывает, и так как не бывает движения, то и сухожилия не нужны. Но во всем прочем они весьма сходны". (394 A. 55. v.)

Медицина

"Жизнь нашу создаем мы смертью других. В мертвой вещи остается бессознательная жизнь, которая, вновь попадая в желудок живых, вновь обретает жизнь чувствующую и разумную". (81 H2. 41 v.)

"Медицина есть восстановление согласия стихий, утративших взаимное равновесие; болезнь есть нестроение стихий, соединенных в живом организме". (41 Tr. 4.)


Аэродинамика

«Когда птица хочет подняться взмахами своих крыльев, поднимает она плечи и концами крыльев ударяет по направлению к себе, в результате чего уплотняет тот воздух, что между концами крыльев и ее грудью, и это напряжение воздуха поднимает птицу ввысь» (V.U. 6 v.)

"Одинаковое сопротивление крыльев у птицы всегда вызывается тем, что они одинаково удалены своими концами от центра тяжести этой птицы... Но когда один из концов крыльев окажется ближе к центру тяжести, чем другой конец, тогда птица опустится той стороной, на которой конец крыльев ближе к центру тяжести". (V.U. 15 r- 14 v.)

Астрономия

Леонардо был художником с совершенным пониманием света и тени, и это отражается в его научных взглядах. Его наблюдения луны в фазе растущего полумесяца привели к одному из самых важных научных утверждений в Кодексе Лейстер - солнечный свет отражается от океанов на Земле и дает вторичную подсветку луны. Это открытие контрастирует с верой Леонардо в то, что луна отражает свет, потому что она покрыта водой.
"Некоторые полагали, что луна имеет немного своего собственного света, но это мнение ложно, поскольку оно основывается на мерцании, видимом в середине между рожками новой луны... такое свечение в это время происходит благодаря нашему океану и другим внутренним морям - поскольку они тогда освещены солнцем, находящимся в точке захода, таким образом, что море тогда играет ту же роль для темной стороны луны, какую полная луна играет для нас, когда солнце садится...."
Кодекс Лейстер

Палеонтология

Наблюдая окаменелые раковины в горах северной Италии, Леонардо дает объяснение, почему они были найдены далеко от моря. Во взглядах тогда преобладало предположение, что такие окаменелости или "росли" в камнях, подобно минеральным кристаллам, или были унесены от моря Библейским Потопом.
Признавая в окаменелостях остатки некогда живых организмов, и приводя доводы против идеи Потопа, Леонардо рассуждал, что такие хрупкие раковины, не могли быть принесены столь глубоко внутрь суши, сохранившись без повреждений. Он также заметил, что окаменелости обычно лежат в последовательных слоях породы, что свидетельствует о том, что они были депонированы многократными событиями, а не только один раз. Он также заметил, что группы различных окаменевших раковин, найденных вместе напоминали группы живых существ, собравшихся в прибрежных водах. По всем этим причинам, Леонардо правильно заключил, что окаменелости остались от животных, которые когда-то населяли древнее море, покрывавшее землю.
Кодекс Лейстер American Museum of Natural History

"В реке одинаковой глубины будет в менее широком месте настолько более быстрое течение, чем в более широком, насколько большая ширина превосходит меньшую. Положение это ясно доказывается путем рассуждения, подкрепляемого опытом. В самом деле, когда по каналу шириною в милю пройдет миля воды, то там, где река будет иметь ширину в пять миль, каждая из квадратных миль дает одну пятую свою часть на покрытие недостатка в воде; и там, где река будет иметь ширину в три мили, каждая из этих квадратных миль дает третью свою часть на покрытие недостатка воды в узком месте; но тогда не могло бы быть истинным положение, гласящее, что река пропускает при любой своей ширине в равное время равное количество воды, вне зависимости от ширины реки".
(T.A. VIII, 41.)

Оптика

"Если глаз находится между двумя конями, бегущими к цели параллельным бегом, будет ему казаться, что они бегут, направляясь друг к другу. Сказанное происходит от того, что изображения коней, запечатлевающиеся в глазу, движутся по направлению к центру поверхности глазного зрачка". (330. К. 120 v.)
"Глаз, воспринимающий через очень маленькое круглое отверстие лучи предметов, расположенных за отверстием, воспринимает их всегда перевернутыми, и тем не менее зрительная сила видит их в том месте, где они действительно находятся. Происходит это оттого, что названные лучи проходят через центр хрусталика, находящегося в середине глаза, и затем расходятся по направлению к задней его стенке. На этой стенке лучи располагаются, следуя предмету, их вызвавшему, и передаются оттуда по ощущающему органу общему чувству, которое о них судит. Что это так, доказывается следующим образом: сделай острием иглы маленькое отверстие в бумаге и рассматривай сквозь него расположенные по ту сторону предметы. Если двигать между глазом и бумагой иглу сверху вниз, то по ту сторону отверстия движение иглы будет казаться противоположным ее действительному движению. Причина этого в том, что, если игла между бумагой и глазом касается самых верхних линий лучей, она закрывает вместе с тем самые нижние по ту сторону бумаги; и когда игла опускается, то она, наконец, достигает самой нижней линии по эту сторону бумаги, следовательно, одновременно самой верхней по ту сторону ее". (321. D. 3 v.)

Физика

"Умножь большее плечо весов на груз, им поддерживаемый, и раздели результат на меньшее плечо, и частное будет груз, который, находясь на меньшем плече, противится опусканию большего плеча в случае равновесия плеч весов". (A. 47 r.)
"Тяжесть, привешенная к одному плечу рычага, сделанного из любого материала, во столько раз большую тяжесть поднимает на конце противоположного плеча, во сколько раз одно плечо больше другого". (А. 47 v.)
"Если сила двигает тело в известное время на известное расстояние, та же самая сила половину этого тела передвинет в то же время на двойное расстояние". (91. F. 26 r.)

Математика

"Пусть не читает меня в основаниях моих тот, кто не математик."
(W.An. IV, 14 v.)
"Никакой достоверности нет в науках там, где нельзя приложить ни одной из математических наук, и в том, что не имеет связи с математикой." (G. 36 v.)
"Удвой квадрат, образуемый диагональным сечением данного куба, и у тебя будет диагональное сечение куба вдвое большего, чем данный: удвой одну из двух квадратных площадей, образуемых при диагональном сечении куба... Другое доказательство, данное Платоном делосцам геометрическое не потому, что ведется при помощи инструментов - циркуля и линейки и опыт нам его не дает, но оно всецело мысленное и, следовательно геометрическое." (F. 59 r.)

Материалы зарубежных газет и сайтов

"Машины Леонардо, от фантазии до реальности"

Клаудиа Ди Джорджио
Леонардо и его кодексы все так же в моде, и не только благодаря нашумевшему роману Дэна Брауна. О том, кто такой Леонардо да Винчи и что он на самом деле написал и придумал, расскажет экспозиция в Академии Линчеи, посвященная "Атлантическому кодексу". На международной выставке будут представлены оригиналы иллюстраций, воспроизведенных издательством Hoepli в 1894-1904 годах.
Среди 10 кодексов, на которые сегодня разделены манускрипты Леонардо, "Атлантический кодекс" – самый объемный, и в нем содержится большая часть его заметок научного и технического характера.
На 1119 листах, из которых состоит "Атлантический кодекс", содержатся записи по математике и астрономии, ботанике и архитектуре, физике и военному искусству. Но, прежде всего, в эту часть наследия Леонардо включены описания машин, поразительных догадок из области механики и инженерии, которые, придуманные и описанные пять веков назад, продолжают восхищать и удивлять.
Когда в конце XIX века были впервые опубликованы записки Леонардо, одним из элементов, больше всего поразившим воображение людей, стали подробные чертежи механизмов и машин, которые появились лишь сотни лет спустя. Велосипеды, подводные лодки, воздушный винт, танки, ткацкие станки, шарикоподшипники и, естественно, летающие машины: нет ни одного изобретения, которое бы тем или иным образом не сопрягалось с научной и технической интуицией Леонардо.
На самом деле большая часть этих планов и чертежей не воплощалась в реальные машины и механизмы на протяжении жизни Леонардо. Более того, незавершенность его творений настолько легендарна, что по легенде его последними словами стали: "Скажите мне, что что-то сделано!" Многие из чертежей великого мастера оказывались нереализуемыми в то время из-за отсутствия необходимых технологий.
Однако в последние десятилетия реконструкция леонардовских машин и проверка их эффективной функциональности превратилась почти в направление истории науки. Например, в Научном музее Милана находится более 30 моделей, другие модели будут представлены на выставке с 13 января в залах Музея римской культуры.
Экспозицию Линчеи украшает самая современная версия машины Леонардо – безусловно, вызывающий наибольшее удивление "самодвижущийся танк" на трех колесах, в котором кое-кто усмотрел не больше и не меньше как прототип самоходных установок НАСА, исследующих Марс.
Представленный в этом году в Музее истории науки Флоренции "автомобиль Леонардо" собран Карло Пердетти, одним из самых известных экспертов планов и проектов Леонардо, специалистом в области робототехники. Деревянная тележка способна двигаться лишь благодаря пружинному мотору и оснащена рулевым механизмом. Но Леонардо разработал эту машину не для транспортировки людей, а как механизм для сцены во время представлений при дворе. Таким образом, в большей степени, чем марсианский робот, она была предшественником аппаратуры для спецэффектов.
"Repubblica" (Переведено 11 января 2005) ИноПресса

Машина Леонардо способна летать

Паола де Каролис
Машина летает. Но он об этом уже никогда не узнает: дельтаплан, задуманный Леонардо да Винчи более 500 лет назад, способен летать. На нем нельзя выполнять фигуры высшего пилотажа, но он отрывается от земли и достигает высоты 15 метров. Возможно, в эпоху Конкорда и сверхзвуковой авиации бывают и более грандиозные рекорды, но мало кто способен подняться на борт машины, спроектированной пять столетий назад.
В Великобритании все же были созданы два дельтаплана - этот год на британском телевидении назван годом великих созданий Леонардо. Планируется показать два документальных фильма о том, как в конце XV века Леонардо уже закладывал основы современной жизни. Оба дельтаплана пригодны к использованию. Первый был создан для программы BBC по одному чертежу Леонардо; он наиболее точно воспроизводит замысел изобретателя и создавался из материалов, которые могли быть в его распоряжении. При создании второго дельтаплана, построенного для Channel 4, использовались несколько проектов великого Леонардо: к чертежу 1487 года были добавлены штурвал управления и трапеция, которые Леонардо изобрел позднее.
"Моей первой реакцией было удивление. Его красота меня просто поразила". Джуди Лиден разбирается в дельтапланах. Она чемпионка мира, и поэтому (а также благодаря весу в 52 кг) она была избрана пилотом двух летальных аппаратов Леонардо. "Мне было немного страшно, когда меня предупредили, что можно подниматься только на безопасную высоту, с которой я могу упасть, не причинив себе вреда. Проектировщики опасались, что дельтаплан сломается в полете, но он оказался более прочным, чем современные модели".
Два полета, два результата: дельтаплан ВВС несколько раз поднимался в воздух, но лишь на несколько секунд, второй пролетел расстояние в 30 метров на высоте 15 метров. "Этот полет можно сравнить с ездой на автомобиле, у которого есть педаль газа и тормоза, но нет руля", - рассказала Лиден. Дельтаплан Леонардо прекрасно летает, но очень неповоротлив.
"Леонардо был человеком с необычайными способностями: 500 лет назад он уже думал о том, как создать вертолет и другие летающие машины", - подчеркнул Эндрю Нахум, директор отдела аэронавтики музея наук в Лондоне, который участвовал в работе над двумя проектами. "Перейти от бумаги к реальности - нелегко".
"Когда я его увидел, я сказал себе, что он никогда не полетит", - поделился своими впечатлениями Тим Мур, собиравший дельтаплан для Channel 4.
Прежде чем на дельтаплане ВВС полетела Лиден, его поместили на испытательный стенд в университете Ливерпуля. "Основная проблема - устойчивость, - считает профессор Гарет Пэдфилд. - Правильно сделали, что провели стендовые испытания. Наш пилот несколько раз падал. Этим аппаратом очень сложно управлять". Испытательные полеты проводились в Сюррее, Англия, и в Тоскане.
По мнению продюсера научного цикла ВВС Майкла Мосли, причина того, что дельтаплан не может летать безукоризненно, заключается в нежелании Леонардо, чтобы его изобретения использовались в военных целях. "Создавая машины, которые он спроектировал, и обнаруживая ошибки, мы чувствовали: они были сделаны неспроста. Наша гипотеза заключается в том, что Леонардо - пацифист, которому приходилось работать на военачальников той эпохи, - специально вносил в свои проекты ошибочную информацию".
Доказательства? Пометка, сделанная на обороте чертежа респиратора для подводного плавания: "Зная о том, как работает сердце человека, они могут научиться убивать людей под водой".
"Corriere della sera" (Переведено 27 января 2003) ИноПресса

Автомобиль Леонардо возвращается к жизни

Джон Хупер
Потребовалось более 500 лет, чтобы проделать путь от рисунка к демонстрационному залу, но сегодня первая рабочая модель "автомобиля", задуманного Леонардо Да Винчи должна быть показана на выставке во Флоренции.
Восемь месяцев работы компьютерных проектировщиков, инженеров и столяров доказала то, что подвергалось сомнению в течение многих столетий: механизм, набросок которого был сделан около 1478 года самым универсальным гением в истории действительно движется.
"Это было, или есть, - первое в мире самоходное транспортное средство", сказал Паоло Галлуцци, директор Института и Музея Истории Науки во Флоренции, наблюдающий за проектом.
Возможно, это разумно, что человечество ожидало изобретения паровой тяги и затем двигателя внутреннего сгорания. Автомобиль Леонардо, 1.68 м. в длину и 1.49 м. в ширину, движется с помощью часового механизма. Пружина заводится вращением колес в направлении противоположном движению.
"Это очень мощная машина" сказал профессор Галлуцци. Настолько мощная, что, хотя была сделана "полномасштабная действующая модель", ее не рискнули испытать. "Она могла столкнуться с чем-нибудь и нанести серьезное повреждение" сказал он.
Повозка, демонстрируемая вчера во Флоренции, была точной копией в масштабе один к трем.
Несколько попыток создать автомобиль по чертежам Леонардо были сделаны в прошлом столетии. Все они закончились неудачей.
Причина была в неправильном понимании, считали, что Леонардо оснастил свою машину двигателем из двух больших плоских пружин, согнутых как в арбалете, изображенном на эскизе в Атлантическом Кодексе (фолиант 812r), одном из величайших собраний его эскизов и записей.
В 1975 году Карло Педретти, директор Центра Арманда Хаммера по изучению Леонардо Да Винчи в Лос-Анджелесе, опубликовал статью, в которой были копии начала XV века некоторых ранних эскизов Да Винчи из архивов Уфицци. "Два рисунка содержат вид сверху пружинного механизма известной самодвижущейся повозки из Атлантического Кодекса" - написал он.
Изучая копии, профессор Педретти понял, что пружины были предназначены не для движения автомобиля, а для управления механизмом двигателя, расположенного в другом месте. В 1996 о его интуиции сообщил в своей книге американский специалист по робототехнике, Марк Рошейм. "Он полагает, что движущая сила обеспечена пружинами, свитыми в барабанах " написал г. Рошейм.
Идея о том, что "двигатели" были расположены в нижней части машины в двух оболочках похожих на барабаны, решила многие загадки в проекте Леонардо. Но до того момента, когда профессор Галлуцци и его команда приступили к работе, это оставалось только теорией.
Их первым шагом было создание компьютерной модели.
"Это заняло четыре месяца" - сказал профессор Галлуцци корреспонденту Гардиан. "Но в конце концов мы имели механизм, в котором были уверены, что он должен работать".
Чтобы проверить границы гения Леонардо, было решено попытаться реализовать его мечту с помощью материалов, доступных мастеру в его время. Это означало работу, главным образом, с древесиной.
Флорентийских реставраторов мебели спрашивали, какую древесину выбрал бы их предшественник, для той или иной части повозки.
"Самая большая проблема состояла в поиске древесины для винтиков, потому что она должна была быть твердой и стойкой.
Законченное транспортное средство содержит пять видов древесины и "исключительно тонкие механизмы".
Исследователи Леонардо уже долгое время полагают, что повозка была предназначена для создания специальных эффектов во время театральных представлений.
Машина имеет тормоз, которым на расстоянии может управлять оператор со скрытой веревкой, так что кажется, будто машина начинает двигаться сама по себе.
Программируемый механизм управления позволяет двигаться прямо или поворачивать под заранее заданным углом. Но только направо. Это хорошо в городах с односторонним движением, подобных сегодняшней Флоренции. Как всегда, Леонардо на столетия опередил свое время.
"The Guardian" (Суббота, 24 апреля 2004 года) Leonardo"s car brought to life

Счетная машина Леонардо да Винчи

Эрес Каплан
Пролог:
Все это началось 2 года назад в июне 1994 года во время поездки в Бостон. При посещении "Бостонского Музея Счетных машин", я купил буклет "История счетных машин" Маргерит Зиентара. На третьей странице я увидел необычное изображение, названное "Счетная машина Леонардо да Винчи". Я начал расспрашивать и тут и там об этом калькуляторе, но чем больше я спрашивал, тем меньше я знал, поскольку ни в каких других книгах о нем не упоминалось. Этот механизм стал темой моих поисков в течение двух последних лет. Он потребовал множества электронных писем, факсов, телефонных звонков и прочего, чтобы собрать информацию об истории этой необычной копии.
Моя особая благодарность г. Джозефу Мирабелле (Нью-Йорк), приемному сыну и помощнику доктора Гуателли, за его первые эскизы и фотографии этого экспоната.
Итак, однажды...
13-го февраля 1967 года американскими исследователями, работающими в Мадриде, в национальной Библиотеке Испании, было сделано удивительное открытие. Они обнаружили две утраченные работы Леонардо да Винчи, известные ныне как "Мадридский Кодекс". Это открытие вызвало большой интерес, а должностные лица заявили, что рукописи "не были потеряны, просто их положили не на то место".
Доктор Роберто Гуателли был известным экспертом по Леонардо да Винчи. Он специализировался на построении точных рабочих копий машин Леонардо. С четырьмя помощниками, включая главного ассистента, своего приемного сына Джозефа Мирабеллу, он создал бесчисленное множество моделей.
В начале 1951 года компания IBM пригласила доктора Гуателли для продолжения работы над копиями. Была организована передвижная экспозиция, которая демонстрировалась в школах, офисах, лабораториях, музеях и галереях.
В 1967 году, вскоре после открытия "Мадридского Кодекса", доктор Гуателли отправился в Массачусетский Университет, чтобы исследовать копию Кодекса. При изучении страницы с калькулятором он вспомнил, что видел подобный рисунок в "Атлантическом Кодексе". Совместив эти два рисунка, доктор Гуателли создал в 1968 году точную копию счетной машины. Собранный им механизм был представлен компанией IBM на выставке.
Текст под экспонатом гласил: "Устройство для вычисления: ранняя версия современной счетной машины. Механизм Леонардо поддерживает постоянное отношение десяти к одному в каждом из его 13 регистрирующих цифровых колес. После полного оборота первой ручки, колесо единиц немного поворачивается, чтобы отметить новую цифру в пределах от ноля до девяти. В соответствии с пропорцией десять к одному, десятый оборот первой ручки заставляет колесо единиц совершить полный оборот и стать на ноль, который в свою очередь сдвигает колесо десятков с ноля на единицу. Каждое последующее колесо, отмечающее сотни, тысячи, и т.д., действует подобным же образом. По сравнению с оригинальным эскизом Леонардо, были внесены небольшие улучшения, чтобы дать зрителю более ясную картину того, как каждое из этих 13 колес может двигаться независимо и все же поддерживать пропорцию десять к одному. В эскизе Леонардо присутствуют гирьки, чтобы продемонстрировать уравновешенность механизма".
Однако в течение года относительно этой модели появились возражения, и тогда в университете Штата Массачусетс были проведены Академические испытания, чтобы установить подлинность механизма.
Среди прочих присутствовал профессор И. Бернард Коэн - консультант по коллекции IBM и доктор Берн Дибнер - ведущий специалист по Леонардо.
Противники утверждали, что рисунок Леонардо изображает не счетную машину, а механизм пропорционирования. Один оборот первой оси вызывает 10 оборотов второй и 10 в 13 степени оборотов последней оси. Но такая машина не могла быть построена из-за огромной силы трения накапливающейся в результате.
Было сказано, что доктор Гуателли "опирался на собственную интуицию и воображение и ушел за границы идей Леонардо". Голоса разделились поровну, тем не менее, IBM решила удалить спорную копию из коллекции.

Эпилог:
Доктор Гуателли скончался в сентябре 1993 года в возрасте 89 лет. Местонахождение копии сегодня неизвестно. Возможно, она находится где-нибудь в одном из хранилищ IBM. Джозеф Мирабелла все еще содержит магазин в Нью-Йорке, где продается множество сделаных руками копий.
(Переведено 15 апреля 2005 года, с любезного разрешения автора статьи).

на журнал "Человек без границ"

«Компьютерные устройства» - Обычно, домой покупают цветные струйные принтеры. Аннотация. Функции компьютера. Ресурсы интернета:www.sipc.ru.; www.compsupport.ru; Компьютерная безопасность. Модем - устройство для выхода в Интернет по телефонной линии. МЯУ!.. и т.п.). Интернет - глобальная система передачи и хранения данных. Не жадничайте!

«Устройство интернета» - Звезда. Тема урока «Состав Интернет». Телеконференции. Хранилища файлов с программами и данными, доступные для пользователя через сеть. Доски объявлений. Структура Интернет. Интернет-телефония. Региональная сеть. Локальные сети. Существуют корпоративные, национальные и международные глобальные сети.

«Искусство Леонардо да Винчи» - Леонардо да Винчи был похоронен в замке Амбуаз. Конец жизни. «Благовещение». Леонардо да Винчи работал над аппаратом вертикального взлёта и посадки. На вертикальном «ornitottero» Леонардо планировал разместить систему втяжных лестниц. Ангел слева (левый нижний угол)- творение кисти Леонардо. Побежденный учитель.

«Работы Леонардо да Винчи» - Изобретения Леонардо Да Винчи. Новые декораторские работы Леонардо да Винчи. 1519 г. 23 апреля. Леонардо в Амбуазе. 1517 г. 1 октября. Жизнь Леонардо Да Винчи. МИЛАН И ФЛОРЕНЦИЯ 1507 г. Смерть Франческо, дяди Леонардо. Хлопоты о наследстве. 1507 г. Октябрь. Отъезд в Рим через Флоренцию. Встреча Франциска I. 1515 г. 8-15 декабря.

«Устройство ЭВМ» - ЭВМ для вычислений. Системное ПО делится на: Операционные системы. В ПК используется структура с одним общим интерфейсом, называемым системной шиной. Для эффективного управления ресурсами ЭВМ стали впервые использоваться ОС. Программно-аппаратный контроль. 1.7 Внешнее запоминающие устройство. Пу. Медленный ответ (кэш-промах).

«Леонардо да Винчи» - 1502 - поступает на службу к Чезаре Борджиа в качестве архитектора и военного инженера. 1514-1516 - работа над картиной «Иоанн Креститель». 1472-1477 - работа над: «Крещение Христа», «Благовещение», «Мадонна с Вазой». 1503 - возвращение во Флоренцию. 1509 - роспись в соборе Святой Анны. 1503 - картины «Битва в Анджарии (при Ангиари)» и «Мона Лиза».

Историю механического этапа развития вычислительной техники можно начать вести с 1492 года, когда Леонардо да Винчи (1452-1519) разработал чертеж счетной машины и описал его в своих дневниках, ныне известных, как двухтомник «Мадридский Кодекс».

Среди чертежей первого тома «Мадридского кодекса», почти полностью посвященного прикладной механике, ученые обнаружили эскиз 13-разрядного суммирующего устройства с десятизубцовыми кольцами.

Основу счетной машины составляли стержни с двумя зубчатыми колесами, большое - с одной стороны и маленькое - с другой. Как видно из эскиза Леонардо да Винчи, эти стержни располагались так, чтобы маленькое колесо на одном стержне входило в сцепление с большим колесом на соседнем стержне. Таким образом десять оборотов первого стержня приводили к одному полному обороту второго стержня, а десять оборотов второго - к одному полному обороту третьего стержня и так далее. Вся система состояла из тринадцати стержней и приводилась в движение набором грузов.

Вероятно, при жизни Леонардо да Винчи счетная машина не была создана.

Спустя почти 150 лет со дня изобретения счетной машины Леонардо да Винчи, в 1623 году в письме Иоганну Кеплеру немецкий профессор математики и астрономии Вильгельм Шикард (1592-1635) написал о машине, которая способна вычитать и складывать, а с помощью особых приспособлений на корпусе - еще и умножать, и приложил эскиз устройства. Это был шести разрядный механический калькулятор, получивший название «Вычисляющие часы». Устройство было названо часами, потому что его принцип работы основывался на использовании звёздочек и шестерёнок, как и в настоящих часах, а когда результат превышал резервы памяти, раздавался звон колокольчика.

Вычисляющие часы – первое механическая счетная машина, позволяющая складывать, вычитать, делить и умножать числа. Однако, она была известна довольно узкому кругу лиц, и поэтому долгое время (почти 300 лет со дня ее изобретения) первой счетной машиной считалось изобретение Блеза Паскаля (Пасклин).

История «вычисляющих часов» трагична. Два изготовленных экземпляра машины, один из которых предназначался Кеплеру, сгорели во время пожара. О самом проекте забыли на долгие годы, и чертежи устройства были утеряны из-за бушующей в тот период Тридцатилетней войны (1618-1648 гг), и только в 1935 году они были найдены. Найдены только для того, чтобы быть потерянными снова по причине второй мировой войны (1941-1945 гг).

И только спустя 21 год, в 1956 году в городской библиотеке Штутгарта была найдена фотокопия эскиза «вычисляющих часов», и в 1960 группа энтузиастов, на основе этой фотокопии и писем Шиккарда, сумели построить действующую модель «вычисляющих часов».

Начало развития технологий принято считать с Блеза Паскаля , который в 1642г. изобрел устройство, механически выполняющее сложение чисел ("Паскалин"). Его машина предназначалась для работы с 6-8 разрядными числами и могла только складывать и вычитать, а также имела лучший, чем все до этого, способ фиксации результата. Машина выполняла суммирование чисел (восьмиразрядных) с помощью колес, которые при добавлении единицы поворачивались на 360 и приводили в движение, следующее по старшинству, колесо всякий раз, когда цифра 9 должна была перейти в значение 10. Машина Паскаля имела размеры 36х13х8 сантиметров. Этот небольшой латунный ящичек было удобно носить с собой. Инженерные идеи Паскаля оказали огромное влияние на многие другие изобретения в области вычислительной техники.

Следующего этапного результата добился выдающийся немецкий математик и философ Готфрид Вильгельм Лейбниц , высказавший в 1672 году идею механического умножения без последовательного сложения. Уже через год он представил машину, которая позволяла механически выполнять четыре арифметических действия, в Парижскую академию. Машина Лейбница требовала для установки специальный стол, так как имела внушительные размеры: 100х30х20 сантиметров.

Значительный вклад в развитие вычислительной техники внёс английский математик и изобретатель Чарльз Бэббидж . Идея построения «разностной машины» для вычисления навигационных, тригонометрических, логарифмических и других таблиц возникла у него в 1812 году. Название она получила из-за использования метода «конечных разностей». Свою первую разностную машину Бэббидж построил в 1822 году. Однако из-за нехватки средств эта машина не была закончена, и сдана в музей Королевского колледжа в Лондоне, где она хранится по сегодняшний день. Однако эта неудача не остановила Бэббиджа. Около 1833 года ему пришла в голову идея «аналитической машины», после чего он разностную машину практически похоронил, так как возможности новой машины значительно перекрывали возможности разностной, она выполняла вычисления без участия человека. Ч.Беббидж предложил так называемый принцип программного управления. Сущность его состоит в том, что вычислительная машина автоматически решает поставленную задачу, если в нее заранее вводится программа, определяющая последовательность выполняемых действий. В сконструированной им в 1834 г. «аналитической машине», эта программа задавалась в виде системы пробивок (перфораций) на соответствующих перфокартах. Такие перфокарты были впервые предложены в начале XIX в. англичанином Ж. Жаккардом для управления ткацким производством. Это был первый пример автоматизации средств производства.

Научные идеи Бэббиджа увлекли дочь известного английского поэта лорда Байрона- графиню Аду Августу Лавлейс . В то время еще не возникли такие понятия, как ЭВМ, программирование, и, тем не менее, Аду Лавлейс по праву считают первым в мире программистом. Дело в том, что Бэббидж не составил не одного полного описания изобретенной им машины. Это сделал один из его учеников в статье на французском языке. Ада Лавлейс перевела ее на английский язык, и не просто перевела, а добавила собственные программы, по которым машина могла бы проводить сложные математические расчеты. В результате первоначальный объем статьи увеличился втрое, и Бэббидж получил возможность продемонстрировать мощь своей машины. Многими же понятиями, введенными Адой Лавлейс в описания тех первых в мире программ, широко пользуются современные программисты.

С 1842 по 1848 год Бэббидж упорно работал, расходуя собственные средства. К сожалению, он не смог довести до конца работу по созданию «аналитической машины» – она оказалась слишком сложной для техники того времени. После смерти Ч. Беббиджа Комитет Британской научной ассоциации, куда входили крупные ученые, рассмотрел вопрос, что делать с неоконченной аналитической машиной и для чего она может быть рекомендована. К чести Комитета было сказано: "...Возможности аналитической машины простираются так далеко, что их можно сравнить только с пределами человеческих возможностей... Успешная реализация машины может означать эпоху в истории вычислений, равную введению логарифмов". Но заслуга Бэббиджа в том, что он впервые предложил и частично реализовал идею программно-управляемых вычислений. Именно «аналитическая машина» по своей сути явилась прототипом современного компьютера и содержала:

ОЗУ на регистрах из колес (Бэббидж назвал его «store» - склад),

АЛУ – арифметико-логическое устройство («mill» - мельница),

Устройство управления и устройства ввода-вывода, последних было даже целых три: печать одной или двух копий (!), изготовление стереотипного отпечатка и пробивка на перфокартах. Перфокарты служили для ввода программ и данных в машину. ОЗУ имело емкость 1000 чисел по 50 десятичных знаков, то есть около 20 килобайт. Заслуги Бэббиджа и Лавлейс значительны: они стали провозвестниками компьютерной эры, наступившей только через 100 лет. В их честь назвали языки программирования – АДА и БЭББИДЖ.

Уроженец Эльзаса Карл Томас , основатель и директор двух парижских страховых обществ в 1818 году сконструировал счетную машину, уделив основное внимание технологичности механизма, и назвал ее арифмометром. Уже через три года в мастерских Томаса было изготовлено 16 арифмометров, а затем и еще больше. Таким образом, Томас положил начало счетному машиностроению. Его арифмометры выпускали в течение ста лет, постоянно совершенствуя и меняя время от времени названия.

Начиная с XIX века, арифмометры получили очень широкое применение. На них выполнялись даже очень сложные расчеты, например, расчеты баллистических таблиц для артиллерийских стрельб. Существовала даже особая профессия – счетчик – человек, работающий с арифмометром, быстро и точно соблюдающий определенную последовательность инструкций (такую последовательность действий впоследствии стали называть программой). Но многие расчеты производились очень медленно, т.к. при таких расчетах выбор выполняемых действий и запись результатов производились человеком, а скорость его работы весьма ограничена. Первые арифмометры были дороги, ненадежны, сложны в ремонте и громоздки. Поэтому в России стали приспосабливать к более сложным вычислениям счеты. Например, в 1828 году генерал-майор Ф.М.Свободской выставил на обозрение оригинальный прибор, состоящий из множества счетов, соединенных в общей раме. Основным условием, позволявшим быстро вычислять, было строгое соблюдение небольшого числа единообразных правил. Все операции сводились к действиям сложения и вычитания. Таким образом, прибор воплощал в себе идею алгоритмичности.

Пожалуй, одно из последних, принципиальных изобретений в механической счетной технике было сделано жителем Петербурга Вильгодтом Однером . Построенный Однером в 1890 году арифмометр фактически ничем не отличается от современных подобных ему машин. Почти сразу Однер с компаньоном наладил и выпуск своих арифмометров - по 500 штук в год. К 1914 году в одной только России насчитывалось более 22 тысяч арифмометров Однера. В первой четверти XX века эти арифмометры были единственными математическими машинами, широко применявшимися в различных областях деятельности человека. Начиная с 1931 года, в СССР выпускается арифмометр ”Феликс”, один из вариантов арифмометра Однера. В России эти, громко лязгающие во время работы, машинки получили прозвище «Железный Феликс». Ими были оснащены практически все конторы.

В ХХІ веке человечество находится в водовороте огромного количества цифр: счета, зарплаты, налоги, дивиденды, кредиты и т.д. Неизбежным является и то, что мир без такого простого, казалось бы, вычислительного прибора, как калькулятор, двигался бы намного медленнее. Ведь, сколько нужных операций мы производим с помощью этого предмета, который был изобретен несколькими столетиями ранее.

Прообраз калькулятора Леонардо

Зимой 1967 американские ученые, работая над одним из проектов на базе национальной Библиотеки Испании, сделали удивительное открытие. Исследователи обнаружили две потерянные работы да Винчи, которые сейчас являются неотъемлемыми составляющими «Мадридского Кодекса». В этом артефакте находятся чертежи механизма, занимающегося счетными операциями, сделанного Леонардо в 1492 году.

Прообраз калькулятора базировался на основаниях с парой зазубренных колес: с одного бока – колесо большого размера, с другого – маленького. Исходя из оставленных чертежей да Винчи, можно понять, что основания были расположены таким образом, что большое колесо одной детали было сцеплено с маленьким колесом другой детали, а сами стержни были через один перевернуты. Механизм приводила в работу цепная реакция: первый стержень, делая десять оборотов, заставлял сделать один оборот второго стержня, соответственно десять оборотов третьего – к одному обороту четвертого. Всего в машине было 13 деталей, которые двигались, благодаря специальным грузам.

Считается, что Леонардо да Винчи не удалось при жизни осуществить этот проект.

Роберто Гуателли и Леонардо да Винчи

Роберто Гуателли был известным экспертом по биографии, творчеству и изобретениям Леонардо да Винчи. Начиная с 1951 года, совместно с организацией IBM он занимался воспроизведением великих работ Леонардо, изучая оставленные им чертежи и эскизы. Проводя исследования с работами по вычислительной машине в «Мадридском кодексе», Гуателли обнаружил, что есть сходства с эскизами в «Атлантическом Кодексе» - еще одном масштабном труде изобретателя.

На основании уже двух изображений в конце 60-х Роберто Гуателли воссоздал образец вычислительной машины. Аппарат работал по принципу десять к одному на каждой из 13 деталей. После того, как первая ручка делала полное вращение, колесико единиц начинало двигаться, и появлялось число от 0 до 9. После того, как десятое вращение первого рычага завершалось, механизм единиц повторял это же действие и возвращался на нулевую отметку, которую передвигал десятичный механизм на единицу. Соответственно, каждое следующее колесо отвечало за обозначение сотни, тысячи и т.д.

Гуателли внес кое-какие корректировки в чертеж Леонардо, с помощью которых перед зрителем открывалась более полная и детализированная картина происходящего.

Но уже после года существования репродукции вычислительной машины, возникли дискуссии касательно точного воспроизведения механизма. Поэтому для установления оригинальности данного изобретения была проведена группа академических исследований. Существовала гипотеза о том, что на чертежах Леонардо изображено устройство,занимающиеся проведением пропорций, а не вычислительная машина. Также существовало мнение, что в аппарате вращение первого основания приводило к десяти оборотам второго, ста оборотам третьего и 10 в 13-й степени вращениям последнего. Оппоненты полагали, что этот механизм не мог функционировать из-за слишком большой силы трения.

Компания IBM, не смотря на разногласия среди исследователей, решила убрать предмет дискуссий из коллекции.

Итак, первый прообраз калькулятора, не только смог принять материальную оболочку спустя несколько столетий, но и стал предметом полемик в научной среде.

«Основы Windows» - Панель задач. Папка может быть пустой. Ярлыки (Shortcuts). Основные объекты. Основы работы с операционной системой WINDOWS. Окно документа. Окно приложения. Основные средства управления – графический манипулятор (мышь или иной аналогичный) и клавиатура. Папки. Основные понятия. Значки – графическое представление объекта.

«Блок-схема» - Язык блок - схем. Основные блоки. Вычисление площади поверхности фигуры по формуле: S=2al+a2.(a=3,l=2). Составьте алгоритм вычисления выражения у=2х+в, х=5, в=5. Язык блок – схем является одним из способов символической записи алгоритмов. Внутри блока дается описание соответствующего действия. Составьте алгоритм для вычисления выражения (а+d(n-1))n/2=y при a=10,d=2,n=3.

«Файлы и папки» - Значки и Ярлыки. COM, EXE - выполняемые файлы. Рабочий стол – рабочая поверхность экрана, главная папка в Windows. Шаблон (маска) файла. Значок программы EXCEL. Ярлык служит для ускорения запуска программ или документов. Корневой каталог. Значок (иконка) обычной папки в windows. Файл - текст или совокупность данных с уникальным именем, хранящиеся на диске.

«Устройства вывода информации» - Качество изображения определяется разрешающей способностью монитора. Качество изображения определяется количеством точек, из которых оно складывается. Чем больше разрешающая способность монитора, тем выше качество изображения. Устройства вывода информации. Лазерные принтеры. Недостатки струйных принтеров: Большой расход чернил; Высокая стоимость заправки.

«Файл и файловая система» - Иерархическая файловая система. Придумай имя графического файла, в котором будет содержаться рисунок твоего дома. Файл и файловая система. Характеристики файла, наделяющие файл определенными свойствами. Каталог содержит имя файла и указание на начало его размещения на диске. Придумай имя текстового файла, в котором будет содержаться информация о твоем доме.

«Информационные процессы» - Информационные процессы в науке. Посмотрев новости, я также получаю информацию. Информационные революции. Характеристики индустриального общества. Внедрение последних достижений научно – технической мысли: изобретений, идей, предложений. Иформационный процесс – процесс, в результате которого осуществляется прием, передача информации.

Всего в теме 44 презентации

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Восстановление IMEI на Android после прошивки Восстановление IMEI на Android после прошивки Виды монетизации трафика Рекламная строчка Ноликс Виды монетизации трафика Рекламная строчка Ноликс Флешка (жесткий диск) просит форматирования, а на ней были файлы (данные) Флешка (жесткий диск) просит форматирования, а на ней были файлы (данные)