Импульсная характеристика: определение и свойства. Импульсная характеристика цепи Реальное применение импульсной характеристики

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Импульсная (весовая) характеристика или импульсная функция цепи – это ее обобщенная характеристика, являющаяся временной функцией, численно равная реакции цепи на единичное импульсное воздействие на ее входе при нулевых начальных условиях (рис. 13.14); другими словами, это отклик цепи, свободной от начального запаса энергии на дельта-функцию Дирана
на ее входе.

Функцию
можно определить, рассчитав переходную
или передаточную
функцию цепи.

Расчет функции
с использованием переходной функции цепи. Пусть при входном воздействии
реакцией линейной электрической цепи является
. Тогда в силу линейности цепи при входном воздействии, равном производной
, реакция цепи будет равна производной
.

Как отмечалось, при
, реакция цепи
, а если
, то реакция цепи будет
, т.е. импульсная функция

Согласно свойству выборки
произведение
. Таким образом, импульсная функция цепи

. (13.8)

Если
, то импульсная функция имеет вид

. (13.9)

Следовательно, размерность импульсной характеристики равна размерности переходной характеристики, поделенной на время.

Расчет функции
с использованием передаточной функции цепи. Согласно выражению (13.6), при воздействии на вход функции
, откликом функции будет переходная функция
вида:

.

С другой стороны, известно, что изображение производной функции по времени
, при
, равно произведению
.

Откуда
,

или
, (13.10)

т.е. импульсная характеристика
цепи равна обратному преобразованию Лапласа ее передаточной
функции.

Пример. Найдем импульсную функцию цепи, схемы замещения которой представлены на рис. 13.12, а ; 13.13.

Решение

Переходная и передаточная функции этой цепи били получены ранее:

Тогда, согласно выражению (13.8)

где
.


График импульсной характеристики
цепи представлен на рис. 13.15.

Выводы

Импульсная характеристика
введена по тем же двум причинам, что и переходная характеристика
.

1. Единичное импульсное воздействие
– скачкообразное и потому довольно тяжелое для любой системы или цепи внешнее воздействие. Следовательно, важно знать реакцию системы или цепи именно при таком воздействии, т.е. импульсную характеристику
.

2. При помощи некоторого видоизменения интеграла Дюамеля можно, зная
вычислить реакцию системы или цепи на любое внешнее возмущение (см. далее пп. 13.4, 13.5).

4. Интеграл наложения (дюамеля).

Пусть произвольный пассивный двухполюсник (рис. 13.16, а ) подключается к источнику непрерывно изменяющегося с момента
напряжения(рис. 13.16,б ).


Требуется найти ток (или напряжение) в любой ветви двухполюсника после замыкания ключа.

Задачу решим в два этапа. Сначала искомую величину найдем при включении двухполюсника на единичный скачок напряжения, который задается единичной ступенчатой функцией
.

Известно, что реакцией цепи на единичный скачок является переходная характеристика (функция)
.

Например, для
– цепи переходная функция по току
(см. п.2.1), для
– цепи переходная функция по напряжению
.

На втором этапе непрерывно изменяющееся напряжение
заменим ступенчатой функцией с элементарными прямоугольными скачками
(см. рис. 13.16б ). Тогда процесс изменения напряжения можно представить как включение при
постоянного напряжения
, а затем как включение элементарных постоянных напряжений
, смещенных относительно друг друга на интервалы времени
и имеющих знак плюс для возрастающей и минус для падающей ветви заданной кривой напряжения.

Составляющая искомого тока в момент от постоянного напряжения
равна:

.

Составляющая искомого тока от элементарного скачка напряжения
, включаемого в момент времениравна:

.

Здесь аргументом переходной функции является время
, поскольку элементарный скачок напряжения
начинает действовать на времяпозднее замыкания ключа или, иначе говоря, поскольку промежуток времени между моментомначала действия этого скачка и моментом времениравен
.

Элементарный скачок напряжения

,

где
– масштабный коэффициент.

Поэтому искомая составляющая тока

Элементарные скачки напряжения включаются на интервале времени от
до момента, для которого определяется искомый ток. Поэтому, суммируя составляющие тока от всех скачков, переходя к пределу при
, и учитывая составляющую тока от начального скачка напряжения
, получаем:

Последняя формула для определения тока при непрерывном изменении приложенного напряжения

(13.11)

называется интегралом наложения (суперпозиции) или интегралом Дюамеля (первой формой записи этого интеграла).

Аналогично решается задача при подключении цепи и источнику тока. Согласно этому интегралу реакция цепи, в общем виде,
в некоторый моментпосле начала воздействия
определяется всей той частью воздействия, которая имела место до момента времени.

Заменой переменных и интегрированием по частям можно получить другие формы записи интеграла Дюамеля, эквивалентные выражению (13.11):

Выбор формы записи интеграла Дюамеля определяется удобством расчета. Например, в случае, если
выражается экспоненциальной функцией, удобной оказывается формула (13.13) или (13.14), что обуславливается простотой дифференцирования экспоненциальной функции.

При
или
удобно применять форму записи, в которой слагаемое перед интегралом обращается в нуль.

Произвольное воздействие
может быть представлено также в виде суммы последовательно включаемых импульсов, как это изображено на рис. 13.17.


При бесконечно малой длительности импульсов
получим формулы интеграла Дюамеля, аналогичные (13.13) и (13.14).

Эти же формулы можно получить из соотношений (13.13) и (13.14), заменив а них производную функцию
импульсной функцией
.

Вывод.

Таким образом, на основе формул интеграла Дюамеля (13.11) – (13.16) и временных характеристик цепи
и
могут быть определены временные функции откликов цепи
на произвольные воздействия
.

Академия России

Кафедра Физики

Лекция

Переходные и импульсные характеристики электрических цепей

Орел 2009

Учебные и воспитательные цели:

Разъяснить слушателям сущность переходной и импульсной характеристик электрических цепей, показать связь между характеристиками, обратить внимание на применение рассматриваемых характеристик для анализа и синтеза ЭЦ, нацелить на качественную подготовку к практическому занятию.

Распределение времени лекции

Вступительная часть……………………………………………………5 мин.

Учебные вопросы:

1. Переходные характеристики электрических цепей………………15 мин.

2. Интегралы Дюамеля………………………………………………...25 мин.

3. Импульсные характеристики электрических цепей. Связь между характеристиками………………………………………….………...25 мин.

4. Интегралы свертки………………………………………………….15 мин.

Заключение……………………………………………………………5 мин.


1. Переходные характеристики электрических цепей

Переходная характеристика цепи (как и импульсная) относится к временным характеристикам цепи, т. е. выражает некоторый переходный процесс при заранее установленных воздействиях и начальных условиях.

Для сравнения электрических цепей по их реакции к этим воздействиям, необходимо цепи поставить в одинаковые условия. Наиболее простыми и удобными являются нулевые начальные условия.

Переходной характеристикой цепи называют отношение реакции цепи на ступенчатое воздействие к величине этого воздействия при нулевых начальных условиях.

По определению ,

– реакция цепи на ступенчатое воздействие; – величина ступенчатого воздействия [В] или [А]. и делится на величину воздействия (это вещественное число), то фактически – реакция цепи на единичное ступенчатое воздействие.

Если переходная характеристика цепи известна (или может быть вычислена), то из формулы можно найти реакцию этой цепи на ступенчатое воздействие при нулевых НУ

Установим связь между операторной передаточной функцией цепи, которая часто известна (или может быть найдена), и переходной характеристикой этой цепи. Для этого используем введенное понятие операторной передаточной функции:

Отношение преобразованной по Лапласу реакции цепи к величине воздействия

представляет собой операторную переходную характеристику цепи:

Следовательно .

Отсюда находится операторная переходная характеристика цепи по операторной передаточной функции.

Для определения переходной характеристики цепи необходимо применить обратное преобразование Лапласа:

,

воспользовавшись таблицей соответствий или (предварительно) теоремой разложения.

Пример: определить переходную характеристику для реакции напряжение на емкости в последовательной

-цепи (рис. 1):

Здесь реакция на ступенчатое воздействие величиной

:

откуда переходная характеристика:

Переходные характеристики наиболее часто встречающихся цепей найдены и даны в справочной литературе.


2. Интегралы Дюамеля

Переходную характеристику часто используют для нахождения реакции цепи на сложное воздействие. Установим эти соотношения.

Условимся, что воздействие

является непрерывной функцией и подводится к цепи в момент времени , а начальные условия – нулевые.

Заданное воздействие

можно представить как сумму ступенчатого воздействия приложенного к цепи в момент и бесконечно большого числа бесконечно малых ступенчатых воздействий, непрерывно следующих друг за другом. Одно из таких элементарных воздействий, соответствующих моменту приложения показано на рисунке 2.

Найдем значение реакции цепи в некоторый момент времени

.

Ступенчатое воздействие с перепадом

к моменту времени обуславливает реакцию, равную произведению перепада на значение переходной характеристики цепи при , т. е. равную:

Бесконечно малое же ступенчатое воздействие с перепадом

, обуславливает бесконечно малую реакцию , где есть время, прошедшее от момента приложения воздействия до момента наблюдения. Так как по условию функция непрерывна, то:

В соответствии с принципом наложения реакции

будет равна сумме реакций, обусловленных совокупностью воздействий, предшествующих моменту наблюдения , т. е.

Обычно в последней формуле

заменяют просто на , поскольку найденная формула верна при любых значениях времени :

Импульс является функцией без какой-либо поддержки времени. С дифференциальными уравнениями используется для получения естественного отклика системы. Естественным ее ответом является реакция на начальное состояние. Форсированный отклик системы - это ответ на вход, пренебрегая ее первичным формированием.

Поскольку импульсная функция не имеет какой-либо поддержки времени, можно описать любое начальное состояние, возникающее из соответствующей взвешенной величины, которая равна массе тела, произведенной на скорость. Любая произвольная входная переменная может быть описана как сумма взвешенных импульсов. В результате, для линейной системы описывается как сумма «естественных» ответов на состояния, представленные рассматриваемыми величинами. Это то, что объясняет интеграл.

Когда вычисляется импульсная характеристика системы, по существу, производится естественный отклик. Если исследуется сумма или интеграл свертки, в основном решается этот вход в ряд состояний, а затем изначально сформированный ответ на эти состояния. Практически для импульсной функции можно привести пример удара в боксе, который длится очень мало, и после этого не будет следующего. Математически он присутствует только в начальной точке реалистической системы, имеющей высокую (бесконечную) амплитуду в этом пункте, а затем постоянно гаснет.

Импульсная функция определяется следующим образом: F(X)=∞∞ x=0=00, где ответ представляет собой характеристику системы. Рассматриваемая функция на самом деле является областью прямоугольного импульса при x=0, ширина которого считается равной нулю. При x=0 высоты h и его ширины 1/h это фактическое начало. Теперь, если ширина становится незначительной, то есть почти стремится к нулю, это делает соответствующую высоту h величины, стремящейся к бесконечности. Это определяет функцию как бесконечно высокую.

Ответ конструкции

Импульсная характеристика следующая: всякий раз, когда системе (блоку) или процессору присваивается входной сигнал, он изменяет или обрабатывает его, чтобы дать желаемое выходное предупреждение в зависимости от функции передачи. Отклик системы помогает определить основные положения, конструкцию и реакцию для любого звука. Дельта-функция является обобщенной, которая может быть определена как предел класса указанных последовательностей. Если принимать импульсного сигнала, то разумеется, что оно является спектром постоянного тока в частотной области. Это означает, что все гармоники (в диапазоне от частоты до +бесконечности) способствуют рассматриваемому сигналу. Спектр частотной характеристики указывает, что эта система обеспечивает такой порядок усиления или ослабления этой частоты или подавляет эти колеблющиеся составляющие. Фазовый говорит о сдвиге, предоставляемом для разных гармоник частоты.

Таким образом, импульсные характеристики сигнала указывают на то, что он содержит в себе весь диапазон частот, поэтому используется для тестирования системы. Потому что, если применять какой-либо другой метод оповещения, то у него не будет всех необходимых сконструированных деталей, следовательно, реакция останется неизвестной.

Реакция устройств на внешние факторы

При обработке оповещения импульсная характеристика представляет собой ее выход, когда он представлен кратким входным сигналом, называемым импульсом. В более общем плане является реакцией любой динамической системы в ответ на некоторые внешние изменения. В обоих случаях импульсная характеристика описывает функцию времени (или, возможно, как некоторой другой независимой переменной, которая параметризирует динамическое поведение). Она имеет бесконечную амплитуду только при t=0 и нулевую всюду, и, как следует из названия, ее импульс i, e действует в течение короткого промежутка.

При применении любая система имеет функцию передачи от входа к выходу, которая описывает ее как фильтр, влияющий на фазу и указанную выше величину в частотном диапазоне. Эта частотная характеристика с использованием импульсных методов, измеренная или рассчитанная в цифровом виде. Во всех случаях динамическая система и ее характеристика могут быть реальными физическими объектами или математическими уравнениями, описывающими такие элементы.

Математическое описание импульсов

Поскольку рассматриваемая функция содержит все частоты, критерии и описание определяют отклик линейной временной инвариантной конструкции для всех величин. Математически как описывается импульс, зависит от того, смоделирована ли система дискретным или непрерывным временем. Его можно моделировать как дельта-функцию Дирака для систем непрерывного времени или как величину Кронекера для конструкции с прерывным действием. Первая представляет собой предельный случай импульса, который был очень коротким по времени, сохраняя свою площадь или интеграл (тем самым давая бесконечно высокий пик). Хотя это невозможно в любой реальной системе, это полезная идеализация. В теории анализа Фурье такой импульс содержит равные части всех возможных частот возбуждения, что делает его удобным тестовым зондом.

Любая система в большом классе, известная как линейная, инвариантная по времени (LTI), полностью описывается импульсной характеристикой. То есть для любого входа выход можно рассчитать в терминах ввода и непосредственной концепции рассматриваемой величины. Импульсное описание линейного преобразования представляет собой образ дельта-функции Дирака при преобразовании, аналогичный фундаментальному решению дифференциального оператора с частными производными.

Особенности импульсных конструкций

Обычно проще анализировать системы, используя передаточные импульсные характеристики, а не ответы. Рассматриваемая величина представляет собой преобразование Лапласа. Усовершенствование ученым выходного сигнала системы может быть определено умножением передаточной функции на это действие ввода в комплексной плоскости, также известной как частотная область. Обратное преобразование Лапласа этого результата даст выход во временной области.

Для определения выхода непосредственно во временной области требуется свертка входа с импульсной характеристикой. Когда передаточная функция и преобразование Лапласа ввода известны. Математическая операция, применяющаяся на двух элементах и реализующая третий, может быть более сложной. Некоторые предпочитают альтернативу - умножение двух функций в частотной области.

Реальное применение импульсной характеристики

В практических системах невозможно создать идеальный импульс для ввода данных для тестирования. Поэтому короткий сигнал иногда используется в качестве приближения величины. При условии, что импульс достаточно короткий, по сравнению с откликом, результат будет близок к истинному, теоретическому. Однако во многих системах вхождение с очень коротким сильным импульсом может привести конструкцию в нелинейный режим. Поэтому вместо этого она управляется псевдослучайной последовательностью. Таким образом, импульсная переходная характеристика рассчитывается из входных и выходных сигналов. Отклик, рассматриваемый как функция Грина, можно рассматривать как «влияние» - как точка входа влияет на выход.

Характеристики импульсных устройств

Колонки являются приложением, которое демонстрирует саму идею (была разработка тестирования импульсного отклика в 1970-х годах). Громкоговорители страдают от неточности фазы, дефекта, в отличие от других измеренных свойств, таких как частотная характеристика. Этот недоработанный критерий вызван (слегка) задержанными колебаниями/октавами, которые в основном являются результатом пассивных кросс-передач (особенно фильтров более высокого порядка). Но также вызваны резонансом, внутренним объемом или вибрированием панелей корпуса. Отклик - конечная импульсная характеристика. Его измерение обеспечило инструмент для использования в уменьшении резонансов за счет применения улучшенных материалов для конусов и корпусов, а также изменения кроссовера динамиков. Необходимость ограничить амплитуду для поддержания линейности системы привела к использованию входов, таких как псевдослучайные последовательности максимальной длины, и к помощи компьютерной обработки для получения остальных сведений и данных.

Электронное изменение

Анализ импульсного отклика является основным аспектом радиолокации, ультразвуковой визуализации и многих областей цифровой обработки сигналов. Интересным примером могут быть широкополосные интернет-соединения. DSL-услуги используют методы адаптивного выравнивания, чтобы помочь компенсировать искажения и помехи сигнала, введенные медными телефонными линиями, используемыми для доставки услуги. В их основе лежат устаревшие цепи, импульсная характеристика которых оставляет желать лучшего. На смену пришли модернизированные покрытия для использования Интернета, телевидения и других устройств. Эти усовершенствованные конструкции способны улучшать качество, особенно с учетом того, что современный мир - это сплошное интернет-соединение.

Системы контроля

В теории управления импульсная характеристика представляет собой отклик системы на вход дельта Дирака. Это полезно при анализе динамических конструкций. Преобразование Лапласа дельта-функции равно единице. Поэтому импульсная характеристика эквивалентна обратному преобразованию Лапласа передаточной функции системы и фильтру.

Акустические и звуковые приложения

Здесь импульсные ответы позволяют записывать звуковые характеристики местоположения, например, концертного зала. Доступны различные пакеты, содержащие оповещения от конкретных мест, от небольших комнат до крупных концертных залов. Эти импульсные отклики могут затем использоваться в приложениях реверберации свертки, чтобы позволить акустическим характеристикам конкретного местоположения применяться к целевому звуку. То есть по факту происходит анализ, разделение различных оповещений и акустики через фильтр. Импульсная характеристика в данном случае способна дать возможность выбора пользователю.

Финансовая составляющая

В современном макроэкономическом моделировании функции импульсного ответа используются для описания того, как она реагирует со временем на экзогенные величины, которые научные исследователи обычно называют потрясениями. И часто имитируются в контексте векторной авторегрессии. Импульсы, которые часто считаются экзогенными, с макроэкономической точки зрения включают изменения в государственных расходах, ставках налогов и других параметрах финансовой политики, изменения денежной базы или других параметров капитала и кредитной политики, перемены производительности или других технологических параметров; преобразование в предпочтениях, такие как степень нетерпения. Функции импульсного отклика описывают реакцию эндогенных макроэкономических переменных, таких как выход, потребление, инвестиции и занятость во время шока и в последующие моменты времени.

Конкретнее об импульсе

По существу дела, ток и импульсная характеристика взаимосвязаны. Потому что каждый сигнал может быть смоделирован как серия. Это происходит ввиду наличия определенных переменных и электричества или генератора. Если система является как линейной, так и временной, реакция прибора на каждый из откликов может быть вычислена с использованием рефлексов рассматриваемой величины.

Интеграл Дюамеля.

Зная реакцию цепи на единичное возмущающее воздействие, т.е. функцию переходной проводимости или (и) переходную функцию по напряжению , можно найти реакцию цепи на воздействие произвольной формы. В основе метода – метода расчета с помощью интеграла Дюамеля – лежит принцип наложения.

При использовании интеграла Дюамеля для разделения переменной, по которой производится интегрирование, и переменной, определяющей момент времени, в который определяется ток в цепи, первую принято обозначать как , а вторую - как t.

Пусть в момент времени к цепи с нулевыми начальными условиями (пассивному двухполюснику ПД на рис. 1) подключается источник с напряжением произвольной формы. Для нахождения тока в цепи заменим исходную кривую ступенчатой (см. рис. 2), после чего с учетом, что цепь линейна, просуммируем токи от начального скачка напряжения и всех ступенек напряжения до момента t, вступающих в действие с запаздыванием по времени.

В момент времени t составляющая общего тока, определяемая начальным скачком напряжения , равна .

В момент времени имеет место скачок напряжения , который с учетом временного интервала от начала скачка до интересующего момента времени t обусловит составляющую тока .

Полный ток в момент времени t равен, очевидно, сумме всех составляющих тока от отдельных скачков напряжения с учетом , т.е.

Заменяя конечный интервал приращения времени на бесконечно малый, т.е. переходя от суммы к интегралу, запишем

. (1)

Соотношение (1) называется интегралом Дюамеля.

Следует отметить, что с использованием интеграла Дюамеля можно определять также напряжение. При этом в (1) вместо переходной проводимости будет входить переходная функция по напряжению.


Последовательность расчета с использованием
интеграла Дюамеля

В качестве примера использования интеграла Дюамеля определим ток в цепи рис. 3, рассчитанный в предыдущей лекции с использованием формулы включения.

Исходные данные для расчета: , , .

  1. Переходная проводимость

.


18. Передаточная функция .

Отношение оператора воздействия к собственному оператору называют передаточной функцией или передаточной функцией в операторной форме.

Звено, описываемое уравнением или уравнениями в символической или операторной форме записи можно охарактеризовать двумя передаточными функциями: передаточной функцией по входной величине u; и передаточной функцией по входной величине f.

и

Используя передаточные функции, уравнение записывают в виде . Это уравнение представляет собой условную более компактную запись форму записи исходного уравнения.

Наряду с передаточной функцией в операторной форме широко используют передаточную функцию в форме изображений Лапласа.

Передаточные функции в форме изображений Лапласа и операторной форме с точностью до обозначений совпадают. Передаточную функцию в форме, изображения Лапласа можно получить из передаточной функции в операторной форме, если в последней сделать подстановку p=s. В общем случае это следует из того, что дифференцированию оригинала - символическому умножению оригинала на p - при нулевых начальных условиях соответствует умножение изображения на комплексное число s.

Сходство между передаточными функциями в форме изображения Лапласа и в операторной форме чисто внешнее, и оно имеет место только в случае стационарных звеньев (систем), т.е. только при нулевых начальных условиях.

Рассмотрим простую RLC (последовательно) цепь, её передаточная функция W(p)=U ВЫХ /U ВХ


Интеграл Фурье.

Функция f (x ), определенная на всей числовой оси называется периодической , если существует такое число, что при любом значении х выполняется равенство . Число Т называется периодом функции.

Отметим некоторые с в о й с т в а этой функции:

1) Сумма, разность, произведение и частное периодических функций периода Т есть периодическая функция периода Т .

2) Если функция f (x ) период Т , то функция f (ax )имеет период .

3) Если f (x )- периодическая функция периода Т , то равны любые два интеграла от этой функции, взятые по промежуткам длины Т (при этом интеграл существует), т. е. при любых a и b справедливо равенство .

Тригонометрический ряд. Ряд Фурье

Если f (x ) разлагается на отрезке в равномерно сходящийся тригонометрический ряд:(1)

То это разложение единственное и коэффициенты определяются по формулам:

где n =1,2, . . .

Тригонометрический ряд (1) рассмотренного вида с коэффициентами называется тригонометрическим рядом Фурье .

Комплексная форма ряда Фурье

Выражение называется комплексной формой ряда Фурье функции f (x ), если определяется равенством

, где

Переход от ряда Фурье в комплексной форме к ряду в действительной форме и обратно осуществляется с помощью формул:

(n =1,2, . . .)

Интегралом Фурье функции f(x) называется интеграл вида:

, где .


Частотные функции.

Если подать на вход системы с передаточной функцией W(p) гармонический сигнал

то после завершения переходного процесса на выходе установится гармонические колебания

с той же частотой , но иными амплитудой и фазой, зависящими от частоты возмущающего воздействия. По ним можно судить о динамических свойствах системы. Зависимости, связывающие амплитуду и фазу выходного сигнала с частотой входного сигнала, называются частотными характеристиками (ЧХ). Анализ ЧХ системы с целью исследования ее динамических свойств называется частотным анализом .

Подставим выражения для u(t) и y(t) в уравнение динамики

(aоp n + a 1 pn - 1 + a 2 p n - 2 + ... + a n)y = (bоp m + b 1 p m-1 + ... + b m)u.

Учтем, что

pnu = pnU m ejwt = U m (jw)nejwt = (jw)nu.

Аналогичные соотношения можно записать и для левой части уравнения. Получим:

По аналогии с передаточной функцией можно записать:

W(j ), равная отношению выходного сигнала к входному при изменении входного сигнала по гармоническому закону, называется частотной передаточной функцией . Легко заметить, что она может быть получена путем простой замены p на j в выражении W(p).

W(j ) есть комплексная функция, поэтому:

где P() - вещественная ЧХ (ВЧХ) ; Q() - мнимая ЧХ (МЧХ) ; А() - амплитудная ЧХ (АЧХ) : () - фазовая ЧХ (ФЧХ) . АЧХ дает отношение амплитуд выходного и входного сигналов, ФЧХ - сдвиг по фазе выходной величины относительно входной:

;

Если W(j ) изобразить вектором на комплексной плоскости, то при изменении от 0 до + его конец будет вычерчивать кривую, называемую годографом вектора W(j ), или амплитудно - фазовую частотную характеристику (АФЧХ) (рис.48).

Ветвь АФЧХ при изменении от - до 0 можно получить зеркальным отображением данной кривой относительно вещественной оси.

В ТАУ широко используются логарифмические частотные характеристики (ЛЧХ) (рис.49): логарифмическая амплитудная ЧХ (ЛАЧХ) L() и логарифмическая фазовая ЧХ (ЛФЧХ) ().

Они получаются путем логарифмирования передаточной функции:

ЛАЧХ получают из первого слагаемого, которое из соображений масштабирования умножается на 20, и используют не натуральный логарифм, а десятичный, то есть L() = 20lgA(). Величина L() откладывается по оси ординат в децибелах .

Изменение уровня сигнала на 10 дб соответствует изменению его мощности в 10 раз. Так как мощность гармонического сигнала Р пропорциональна квадрату его амплитуды А, то изменению сигнала в 10 раз соответствует изменение его уровня на 20дб,так как

lg(P 2 /P 1) = lg(A 2 2 /A 1 2) = 20lg(A 2 /A 1).

По оси абсцисс откладывается частота w в логарифмическом масштабе. То есть единичным промежуткам по оси абсцисс соответствует изменение w в 10 раз. Такой интервал называется декадой . Так как lg(0) = - , то ось ординат проводят произвольно.

ЛФЧХ, получаемая из второго слагаемого, отличается от ФЧХ только масштабом по оси . Величина () откладывается по оси ординат в градусах или радианах. Для элементарных звеньев она не выходит за пределы: - + .

ЧХ являются исчерпывающими характеристиками системы. Зная ЧХ системы можно восстановить ее передаточную функцию и определить параметры.


Обратные связи.

Принято считать, что звено охвачено обратной связью, если его выходной сигнал через какое-либо другое звено подается на вход. При этом, если сигнал обратной связи вычитается из входного воздействия (), то обратную связь называют отрицательной. Если сигнал обратной связи складывается с входным воздействием (), то обратную связь называют положительной.

Передаточная функция замкнутой цепи с отрицательной обратной связью - звена, охваченного отрицательной обратной связью,- равна передаточной функции прямой цепи , деленной на единицу плюс передаточная функция разомкнутой цепи

Передаточная функция замкнутой цепи с положительной обратной связью равна передаточной функции прямой цепи, деленной на единицу минус передаточная функция разомкнутой цепи


22. 23. Четырёхполюсники .

При анализе электрических цепей в задачах исследования взаимосвязи между переменными (токами, напряжениями, мощностями и т.п.) двух каких-то ветвей схемы широко используется теория четырехполюсников.

Четырехполюсник – это часть схемы произвольной конфигурации, имеющая две пары зажимов (отсюда и произошло его название), обычно называемые входными и выходными.

Примерами четырыхполюсника являются трансформатор, усилитель, потенциометр, линия электропередачи и другие электротехнические устройства, у которых можно выделить две пары полюсов.

В общем случае четырехполюсники можно разделить на активные, в структуру которых входят источники энергии, и пассивные, ветви которых не содержат источников энергии.

Для записи уравнений четырехполюсника выделим в произвольной схеме ветвь с единственным источником энергии и любую другую ветвь с некоторым сопротивлением (см. рис. 1,а).

В соответствии с принципом компенсации заменим исходное сопротивление источником с напряжением (см. рис. 1,б). Тогда на основании метода наложения для цепи на рис. 1,б можно записать

Уравнения (3) и (4) представляют собой основные уравнения четырехполюсника; их также называют уравнениями четырехполюсника в А-форме (см. табл. 1). Вообще говоря, существует шесть форм записи уравнений пассивного четырехполюсника. Действительно, четырехполюсник характеризуется двумя напряжениями и и двумя токами и . Любые две величины можно выразить через остальные. Так как число сочетаний из четырех по два равно шести, то и возможно шесть форм записи уравнений пассивного четырехполюсника, которые приведены в табл. 1. Положительные направления токов для различных форм записи уравнений приведены на рис. 2. Отметим, что выбор той или иной формы уравнений определяется областью и типом решаемой задачи.

Таблица 1. Формы записи уравнений пассивного четырехполюсника

Форма Уравнения Связь с коэффициентами основных уравнений
А-форма ; ;
Y-форма ; ; ; ; ; ;
Z-форма ; ; ; ; ; ;
Н-форма ; ; ; ; ; ;
G-форма ; ; ; ; ; ;
B-форма ; . ; ; ; .

Характеристическое сопротивление и коэффициент
распространения симметричного четырехполюсника

В электросвязи широко используется режим работы симметричного четырехполюсника, при котором его входное сопротивление равно нагрузочному, т.е.

.

Это сопротивление обозначают как и называют характеристическим сопротивлением симметричного четырехполюсника, а режим работы четырехполюсника, для которого справедливо

,

Замечательная особенность линейных систем - справедливость принципа суперпозиции - открывает прямой путь к систематическому решению задач о прохождении разнообразных сигналов через такие системы. Способ динамического представления (см. гл. 1) позволяет представлять сигналы в виде сумм элементарных импульсов. Если удастся тем или иным способом иайти реакцию на выходе, возникающую под воздействием элементарного импульса на входе, то окончательным этапом решения задачи явится суммирование таких реакций.

Намеченный путь анализа основан на временном представлении свойств сигналов и систем. В равной мере применим, а порой и гораздо более удобен анализ в частотной области, когда сигналы задаются рядами или интегралами Фурье. Свойства систем при этом описываются их частотными характеристиками, которые указывают закон преобразования элементарных гармонических сигналов.

Импульсная характеристика.

Пусть некоторая линейная стационарная система описывается оператором Т. Для простоты будем полагать, что входной и выходной сигналы одномерны. По определению, импульсной характеристикой системы называется функция являющаяся откликом системы на входной сигнал Это означает, что функция h(t) удовлетворяет уравнению

Поскольку система стационарна, аналогичное уравнение будет и в случае, если входное воздействие смещено во времени на производную величину :

Следует ясно представить себе, что импульсная характеристика, так же как и порождающая ее дельта-функция, есть результат разумной идеализации. С физической точки зрения импульсная характеристика приближенно отображает реакцию системы на входной импульсный сигнал произвольной формы с единичной площадью при условии, что длительность этого сигнала пренебрежимо мала по сравнению с характерным временным масштабом системы, например периодом ее собственных колебаний.

Интеграл Дюамеля.

Зная импульсную характеристику линейной стационарной системы, можно формально решить любую задачу о прохождении детерминированного сигнала через такую систему. Действительно, в гл. 1 было показано, что входной сигнал всегда допускает представление вида

Отвечающая ему выходная реакция

Теперь примем во внимание, что интеграл есть предельное значение суммы, поэтому линейный оператор Т на основании принципа суперпозиции может быть внесен под знак интеграла. Далее, оператор Т «действует» лишь на величины, зависящие от текущего времени t, но не от переменной интегрирования х. Поэтому из выражения (8.7) следует, что

или окончательно

Эта формула, имеющая фундаментальное значение в теории линейных систем, называется интегралом Дюамеля. Соотношение (8.8) свидетельствует о том, что выходной сигнал линейной стационарной системы представляет собой свертку двух функций - входного сигнала и импульсной характеристики системы. Очевидно, формула (8.8) может быть записана также в виде

Итак, если импульсная характеристика h(t) известна, то дальнейшие этапы решения сводятся к полностью формализованным операциям.

Пример 8.4. Некоторая линейная стационарная система, внутреннее устройство которой несущественно, имеет импульсную характеристику, представляющую собой прямоугольный видеоимпульс длительностью Т. Импульс возникает при t = 0 и обладает амплитудой

Определить выходную реакцию данной системы при подаче на вход ступенчатого сигнала

Применяя формулу интеграла Дюамеля (8.8), следует обратить внимание на то, что выходной сигнал будет выглядеть по-разному в зависимости от того, превышает или нет текущее значение длительность импульсной характеристики. При имеем

Если же то при функция обращается в нуль, поэтому

Найденная выходная реакция отображается кусочно-лннейным графиком.

Обобщение на многомерный случай.

До сих пор предполагалось, что как входной, так и выходной сигналы одномерны. В более общем случае системы с входами и выходами следует ввести парциальные импульсные характеристики каждая из которых отображает сигнал на выходе при подаче на вход дельта-функции.

Совокупность функций образует матрицу импульсных характеристик

Формула интеграла Дюамеля в многомерном случае приобретает вид

где - -мерный вектор; - -мерный вектор.

Условие физической реализуемости.

Каков бы ни был конкретный вид импульсной характеристики физически осуществимой системы, всегда должен выполняться важнейший принцип: выходной сигнал, отвечающий импульсному входному воздействию, не может возникнуть до момента появления импульса на входе.

Отсюда вытекает очень простое ограничение на вид допустимых импульсных характеристик:

Такому условию удовлетворяет, например, имупльсная характеристика системы, рассмотренной в примере 8.4.

Легко видеть, что для физически реализуемой системы верхний предел в формуле интеграла Дюамеля может быть заменен на текущее значение времени:

Формула (8.13) имеет ясный физический смысл: линейная стационарная система, выполняя обработку поступающего на вход сигнала, проводит операцию взвешенного суммирования всех его мгновенных значений, существовавших «в прошлом» при - Роль весовой функции выполняет при этом импульсная характеристика системы. Принципиально важно, что физически реализуемая система ни при каких обстоятельствах не способна оперировать «будущими» значениями входного сигнала.

Физически реализуемая система должна быть, кроме того, устойчивой. Это означает, что ее импульсная характеристика должна удовлетворять условию абсолютной интегрируемости

Переходная характеристика.

Пусть на входе линейной стационарной системы действует сигнал, изображаемый функцией Хевисайда .

Выходную реакцию

принято называть переходной характеристикой системы. Поскольку система стационарна, переходная характеристика инвариантна относительно временного сдвига:

Высказанные ранее соображения о физической реализуемости системы полностью переносятся на случай, когда система возбуждается не дельта-функцией, а единичным скачком. Поэтому переходная характеристика физически реализуемой системы отлична от нуля лишь при в то время как при t Между импульсной и переходной характеристиками имеется тесная связь. Действительно, так как то на основании (8.5)

Оператор дифференцирования и линейный стационарный оператор Т могут меняться местами, поэтому

Воспользовавшись формулой динамического представления (1.4) и поступая так же, как и при выводе соотношения (8.8), получаем еще одну форму интеграла Дюамеля:

Частотный коэффициент передачи.

При математическом исследовании систем особый интерес представляют такие входные сигналы, которые, будучи преобразованы системой, остаются неизменными по форме. Если имеется равенство

то является собственной функцией системного оператора Т, а число X, в общем случае комплексное, - его собственным значением.

Покажем, что комплексный сигнал при любом значении частоты есть собственная функция линейного стационарного оператора. Для этого воспользуемся интегралом Дюамеля вида (8.9) и вычислим

Отсюда видно, что собственным значением системного оператора является комплексное число

(8.21)

называемое частотным коэффициентом передачи системы.

Формула (8.21) устанавливает принципиально важный факт - частотный коэффициент передачи и импульсная характеристика линейной стационарной системы связаны между собой преобразованием Фурье. Поэтому всегда, зная функцию можно определить импульсную характеристику

Мы подошли к важнейшему положению теории линейных стационарных систем - любую такую систему можно рассматривать либо во временной области с помощью ее импульсной или переходной характеристик, либо в частотной области, задавая частотный коэффициент передачи. Оба подхода равноценны и выбор одного из них диктуется удобствами получения исходных данных о системе и простотой вычислений.

В заключение отметим, что частотные свойства линейной системы, имеющей входов и выходов, можно описать матрицей частотных коэффициентов передачи

Между матрицами существует закон связи, аналогичный тому, который задан формулами (8.21), (8.22).

Амплитудно-частотная и фазочастотная характеристики.

Функция имеет простую интерпретацию: если на вход системы поступает гармонический сигнал с известной частотой и комплексной амплитудой то комплексная амплитуда выходного сигнала

В соответствии с формулой (8.26) модуль частотного коэффициента передачи (АЧХ) есть четная, а фазовый угол (ФЧХ) - нечетная функция частоты.

Гораздо сложнее ответить на вопрос о том, каким должен быть частотный коэффициент передачи для того, чтобы выполнялись условия физической реализуемости (8.12) и (8.14). Приведем без доказательства окончательный результат, известный под названием критерия Пэли - Винера: частотный коэффициент передачи физически реализуемой системы должен быть таким, чтобы существовал интеграл

Рассмотрим конкретный пример, иллюстрирующий свойства частотного коэффициента передачи линейной системы.

Пример 8.5. Некоторая линейная стационарная система имеет свойства идеального ФНЧ, т. е. ее частотный коэффициент передачи задается системой равенств:

Да основании выражения (8.20) импульсная характеристика такого фильтра

Симметрия графика этой функции относительно точки t = 0 свидетельствует о нереализуемости идеального фильтра нижних частот. Впрочем, этот вывод непосредственно вытекает из критерия Пэли - Винера. Действительно, интеграл (8.27) расходится для любой АЧХ, которая обращается в нуль на некотором конечном отрезке оси частот.

Несмотря на нереализуемость идеального ФНЧ, эту модель с успехом используют для приближенного описания свойств частотных фильтров, полагая, что функция содержит фазовый множитель, линейно зависящий от частоты:

Как нетрудно проверить, здесь импульсная характеристика

Параметр равный по модулю коэффициенту наклона ФЧХ, определяет задержку во времени максимума функции h(t). Ясно, что данная модель тем точнее отображает свойства реализуемой системы, чем больше значение

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Флешка (жесткий диск) просит форматирования, а на ней были файлы (данные) Флешка (жесткий диск) просит форматирования, а на ней были файлы (данные) Ищем потерянное мобильное устройство: как найти телефон по imei через спутник бесплатно Ищем потерянное мобильное устройство: как найти телефон по imei через спутник бесплатно Орион пв 700 оторвалась кнопка пуск заряд Орион пв 700 оторвалась кнопка пуск заряд